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the Dynamic Coefficients of a
Tilting Pad Journal Bearing

An approximate method is developed to include the flexibility of the pad in the
calculation of the stiffness and damping properties of a tilting pad journal bearing.
1t is a small-amplitude perturbation solution in which the pad deformation is ac-

counted for solely by the change in clearance. A comparison of results with those
obtained from a more complete elasto-hydrodynamic solution shows good

agreement.

Introduction

Experience suggests that tilting pad journal bearings have
less damping than predicted from theory. A major reason is
that the theory assumes the pads to be rigid whereas a signifi-
cant reduction in damping does occur when the pads are
treated as flexible. Thus, for more realistic results the flexibili-
ty of the pad and, also, of the pivot should be included in the
analysis as clearly demonstrated by references [1, 2, 14].

The referenced studies employ an elasto-hydrodynamic
solution with coupling between the Reynolds equation and the
elasticity equation via the local pressure and the local change
in film thickness ([2] unjustifiably ignores the dynamically in-
duced deformations). This necessitates an iterative procedure
which is frequently slow in converging and, therefore, time-
consuming.

Instead, an alternative method has been developed. It is ap-
proximate, but much faster, which is of practical importance
when performing rotor-dynamics calculations.

Analysis

To consider a single pad, its radius of curvature is R+ C
where R is the journal radius, and C is the machined clearance
plus any contribution from thermal deformations. The static
load on the pad causes the clearance to increase by an amount
AC, such that the operating clearance becomes:

Cy=C+AC, 0Y)
For later use the ratio between the two clearances is given as
C
= 2
G @

Under dynamic conditions there is a further time varying
change in clearance, AC.

The journal center position relative to the pad is measured
in an x-y coordinate system with origin in the pad’s center of
curvature and with the x-axis passing through the pivot point,
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Fig. 1 Coordinate systems

see Fig. 1. The static equilibrium position has the coordinates
x, and y,, and the dynamic amplitudes Ax and Ay are
measured from this point. With 6 as the angular coordinate,
measured from the negative x-axis such that the pivot point is
at § = , the oil film thickness, /, can be expressed in dimen-
sionless form as:

h= —C}f—o =hy+Ah 3)
where:
ho =1+T (Xyc080 + Josinf) = 1 + e,cos(0 — ) )
AR=T/AC + A%cosd+ Aysing) )
and

}EO’yosz/C»yO/C

= 6
AC, A%, Ay=AC/C, Ax/C, Ay/C ©

Discussion on this paper will be accepted at ASME Headquarters until December 22, 1986




The pressure, p, in the oil film is determined from Reynolds
equation which in dimensionless form is written as:

. aEs gk . ok
ao( a; )" Tt O
where: R\ 2
=p/6usz(a) ®
¢=z/R
7=Qt

u is the oil viscosity, Q is the angular speed of rotation, z is the
axial coordinate, and ¢ is time.
A perturbatlon solution of equation (7) is sought where:
P=Do+Ap ®)
Ap=T (P, A%+ pA%+ Pp,AY+ PyAY + P AC+p!AC) (10)
Dots indicate derivative with respect to 7.
By substituting equations (3), (5), (9) and (10), into equation
(7) and retaining only first-order terms, seven equations are
obtained:

ah,
R{py} =—60— T'(—X,sind + yycos0) = —eosin(f0 — ¢) (11
_ cos() 8h0 dp, 9 (cosf .
R{p,}=- = =\ )— 12
()= =3 == 2= 3hs 55 55\, ) om0 (12
R{p,}=2cosf (13)
_ sind dh, _., dp, 9 (sinf
R =3 - h3———<——. )+ ] 14
Lhyd R TR AN A AR
R{p;} =2sind (15)
. 3 0hy Ly 0D
Rffp) = e =33 16
(e} =—7 -5 ~3h 3¢ ao (16)
R{pl}= 17)
where the left-hand side operator is:
d /.. @ d /. 8
R( Y= (R =)+ (B =) 18
=g\ 5 ar \'° 3¢ 18)
Nomenclature

The equations are solved numerically in finite difference
form as for example shown in details in reference [12].
The reaction forces, F, and F,, are obtained by integrating

the pressure distribution over the pad arc, from § = 6, to § =
6,, and over the axial length L:
s R \?2 _ =
F,=F,/uNDL (?) =F +AF,
19
_ R\2 _ =
F,=F,/uNDL (—C——> =Fy, +AF,
where:
Exﬁ}_ 2(_ om SGZ SL/D— {cps@} )
Py =T /D Jo, Jo Do) sinf dcde (20)

D is the diameter (D = 2R) and N is the speed in rps (V =
Q/27). Usually p, is calculated for some selected value of I'x,
= x,/C, while I'y, is varied until Fyo = 0 which, then, is the
static equilibrium position. The corresponding value of Fy
represents the inverse Sommerfeld number.

The dynamic forces may be written as:

AF, =T3(K},A%+ B, Ax+ K], Ay+BxyAy+K;CAC+B;CAC)
@1
AF,=T%(K, A%+ B, A%+ K;,Ay + B;, AP+ K. AC+ B AC)

where:

-l e @
RS= "Dl Jo Prlsing %9 i
and analogously for the remaining coefficients.
The change in clearance, AC, + AC, caused by the pressure
distribution, is evaluated by an approximate method. The pad

is treated as a beam with a load per unit length of:

L/D
a@=2]"" pdz @)

This sets up a bending moment, M, in the pad:

J = mass moment of inertia
C = radial clearance of of pad in pitching e = ey/C,, static eccentricity
unloaded pad, including K, = dynamic radial stiffness ratio
thermal deformations of pivot ¢£,m = coordinate system for
C, = C+AC,, operating radial L = axial length of pad pad, origin in bearing
clearance of pad m = mass of pad center
AC, = change in radial clearance N = rotational speed, rps &, = &, + Af,, radial motion
caused by static load p = oil film pressure of pad
AC = change in radial clearance R = journal radius 1, = Ra = 9, + Ay,
caused by dynamic load R, = radius of curvature of tangential motion of
D = journal diameter neutral axis of pad center of curvature of
d, = preload of unloaded pad, = time pad
including thermal W = static load on bearing 0,—0, = pad arc
deformations X,Y = coordinate system, origin A = dimensionless flexibility
E = modulus of elasticity in bearing center, X-axis parameter, equation (28)
e = journal center eccentricity in load direction p = oil viscosity
from center of curvature X,y = coordinate system for 7 = Qf, dimensionless time
of pad pad, origin in center of ¢ = attitude angle
Ry, = oil film thickness at pivot curvature Y = angle between X-axis and
point o = ay + Ag, tilt angle of £-axis
I = cross-sectional area mo- pad = 27N, angular speed of
ment of inertia of pad ' = C/C, rotation
I, = reference value of 1 vy = w/Q, frequency ratio w = angular whirl frequency
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where R, is the radius of curvature of the neutral axis of the
pad. With a cross-sectional area moment of inertia, 7, and an
elasticity modulus, E, the averaged change in curvature is
given by:

1 1 AC,+AC 1 b2 M
e =0 > = S —db (25)
R, R,+AC,+AC Rz 0,—0, Jo, EI

With substitution from equations (9), (10), (23), and (24),
the result may be written as:

=T?Aq, (26)

AC 3 - - - =
?=AC=I’3A(aXA)E+ b Ax+a,Ay+b,Ay+a AC+bAC)

27
where:
R\2 R:® R
A=uNDL (—) 1= T
€ El, C

1, is some representative value of 7.
The coefficients are computed from:

R .. HT IOSG in(9 e')SL/D 5,did’ db
o 0,—6, L/D 0 K 93 A q

(28)

62 I, % L/D
+S 7S9 sin(()’—ﬂ)g podg‘dﬂ’d(?:l

T 0

(29

and analogously for the remaining coefficients (as an example
a, is obtained from equation (29) by replacing p, with p,).

The foregoing derivation assumes the pad to be in
equilibrium. This requires that at the pivot point there is a ver-
tical reaction force, F,, a horizontal reaction force, F,, and a
reaction moment. The two forces are given by equations (19),
(20), and (21), and the reaction moment is found to be R, F,
equal to the discontinuity in the bending moment at == as
deduced from equation (24). Under static conditions, F, is
zero and there is no discontinuity, but this may not be true
under dynamic conditions. The dynamic moment, R, * AF,
however, is resisted only by the inertia of the pad, and setting
it equal to zero implies that the contribution from the inertia
forces to the deformation of the pad has been ignored.

By making use of equations (1) and (2), equation (26) is
written as:

(30

AC, _
1+ =Aaq,

C
which can be solved for ACy/C, whereby the value of T' is
established.

For the dynamic case the motion shall be assumed to be har-
monic with an angular frequency w such that:

ACO) 2
C

Ax=Ax.coswt — Ax,sinwt = Re{ (Ax. + Ax,)e®'}  (31)

and similarly for Ay and AC (i = v — 1 is the imaginary unit).
This is written in short form as:

Ax=Ax, + iAx; 32)
where exp(iwf) and the real part operator are implied. Hence:
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a;;Atx =ijwAx (33)
or in dimensionless form:
- dAx
Ax= % A iyAX 34)
where:
w
=g (35)
Thereby the solution of equation (27) becomes:
AC=Z, A%+ Z[,Ay (36)
where:
Z!. =T3A(a,+iyb,)/[1-T3A(a,+ivb,)] a7

Z[,=T3A(a,+iyb,)/[1 -T3A(a.+iyb,)]

Similarly the dynamic reaction forces from equation (21) can

be expressed as:
AF, =T3(Z, A%+ Z;yA)F+Z§CAC‘) 39)
AF,=T3Z, A%+ Z;,Ay + Z; AC)

where:
Z! =K. +iyBl,

and analogously for the remaining impedances.

Because the pad’s center of curvature is not stationary, it
becomes necessary to refer the journal center motion to a fixed
£-n-coordinate system with origin in the bearing center and the
£-axis passing through the pivot point. The distance between
the two centers is d. The pad tilts the angle o around the pivot
point and, in addition, it has a radial motion £, because of the
flexibility of the pivot. Referring to Fig. 1 it is seen that:

x=£+d=ecos¢

(39

; (40)
y=n—Ra=esing
For the unloaded pad, d equals d, which is the installed
preload, including thermal deformations. With load on the
pad, d increases by the increase in clearance, AC, + AC, and
decreases by the radial motion £,,. Hence, for static conditions
equation (40) may be written in dimensionless form as:

)20 = E_O +aT0 +ACO = E_po =€0COS¢0/P

S = . 41)
Yo =10~ Tipo = €oSingy/T
where:
£0, To» f_po, AC,, dy=£,/C, ijy/C, épo/C, AC,/C,dy/C  (42)
fip0 =Ray/C 43)

For the dynamic load conditions, equations (40) yield the
dimensionless equations:

Ax=AE+AC—-AE, (44)

Ay=A7—A7, 45)

By substituting equation (36) into equation (44) it is found
that:

A% = (AE—AE,+Z,Ap)/(1-Z,,) (46)

Furthermore, equation (36) can be substituted into equa-

tions (38), and by making use of equations (46) and (45), the
dynamic forces can be expressed as:

AF,=Z{, (AE—AE,) + Z{, (A7 — Af),)

_ 2 _ @7
AF, =27 (Af—AE,) + Z,, (A7 —Af,)
where:
Zy =T (Zyu+ZyZ0)/ (1-Z,)
zZi, =I‘3(Z;y +ZyZy)+ZyZ,
3




Zy=T%Zy+Z,.Z0)/ (1 -2},
Z, =12y, +Z; Z,)+ Z,, 7}, 48)
The equations of motion for the pad are:
d* A,
dr
dAx
J —5—=R-4F,

where m is the mass of the pad, Jis the pitch mass moment of
inertia around the pivot axis, and K »i the dynamic stiffness of
the pivot. In dimensionless form the equations become:

(K, —vy*m)AE, =AF,

m +K, AL, =

X

49)

(50)
—y2JeAfj, =AF,
where:
iy R 2
K,=CK,/uNDL (7) 51)
Ie 2
fi=C Q2m/uNDL <T> (52)
_ 7 R\2

F=C @ -2 /uN, (_)

< /uNDL (= 53)

With substitution from equation (47), equation (50) may be
solved:

{ } {ng an} {(Zss =k
AF, (Z4 + K, —y2rm)

where:
= (: ggK =gy m)(Z’ —y2J)— ZLZy (55)
The equation may be contracted as:

AF, Zy Z
{-H& i
AF, z, Z,

{E} { cosy sinyb}{X}
= (59)
i —siny cosy Y

The reaction forces on the journal are:

{ } {cos . }{ X}
(60)
pads siny  cosy F,

The static equilibrium forces are Fy, and Fy,, the former
being equal to the static load, W, and the latter being zero.
Because F is zero, equation (60) yields:

5 R \?2 -
Fyo=W/uNDL (—) = Y cosyeFy (61)
c
pads
Fyp= 0 = ) singeFy (62)
pads

where F, is obtained from equation (20). F, gives the inverse
Sommerfeld number for the bearing.

The static equilibrium coordinates for the journal center,
X, and Y,, must be selected such that equation (62) is
satisfied. When the pads are arranged symmetrically with
respect to the load line, Y, is zero, but otherwise some
iterative scheme must be employed.

The dynamic forces may be expressed as:

HY e
)
Ziw Ly AX
- (63)
{: :}> {: ZZ)CY ZZi’Y :}”{:‘3 )’:}

where AX, AY = AX/C, AY/C and the forces are made

dimensionless as also used in equation (19). By combining
equations (56), (59), and (60) it is found that:

{ Zyx Zyy } {cos\b — sin\/x} { Zy Z, }{ cosy siny
= E (64)
Zyvw Zyy pads sing  cosy Z: Z, —siny COS\L}

where the four impedances are obtained by multiplying out the
matrices in equation (54).

Usually, the inertia of the pad can be ignored. With m = J
= 0, the effective impedances become:

Zy=K,(Z4Zy—Z4Z3) (24 +K,) 2, ~ 24, Z )]
m=Zgg =Zy =0 7

In this case, the pad has only radial stiffness and damping.
Its radial impedance, Z;;, is obtained as the oil film im-
pedance: Z/, — Z; Z,./Z, in series with the pivot stiffness

o
The impedance may be expressed as:

Z, =K, +iyB,, (58)

where K, and By are the effective stiffness and damping

coefficients, respectively. They are not constants but depend

strongly on frequency, even when the pad inertia is ignored.
To assemble the pads for the composite bearing, an X-Y

“coordinate system is introduced with origin in the bearing

center and with the X-axis in the static load direction. The
angle between the X-axis and the pad’s é-axis is i, measured in
the direction of rotation, whereby:

4

When the inertia of the pads is ignored such that equation (57)
applies, the equation reduces to:

Zyx= Y, cOsMeZy Zyy= ) sintyeZy

pads pads

Zyy=Zyx= Y, cospesingeZ; (65)

pads

For a symmetric bearing, Zyy = Zyy = 0.

To sum up the procedure, calculations are first performed
for the single pad for a range of values of I'x, = €,cos¢,. For
each value the static equilibrium is determined such that F) is
zero (equation (20)) after which equation (30) is solved to ob-
tain AC, and, hence, T'. Then F,q can be computed from equa-
tion (20), and the radial motion of the pad is given by:

§p0=£p0/C=Fx0/CKp0 (66)
where K, is the static stiffness of the pivot. In case of Hert-
zian contact, the relationship is nonlinear and must be solved

by some iterative procedure. The dynamic stiffness, K, is
given by the slope of the load-deflection curve at static
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Fig. 2 Dimensionless pad load. 60 deg arc, L/ID =1, pivot position 0.6
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Fig. 3 Dimensionless stiffness coefficient. 60 deg arc, LID = 1, pivot
position 0.6, synchronous frequency

equilibrium, and the impedances of the pad can then be ob-
tained from equations (54) to (56), based on a specified fre-
quency value.

Finally, equation (41) can be evaluated as:

So=Xg—dy—AC;+ &y 67)

Thus a table is generated where the load, F,g, and the four
impedances Zy;, Z,, Z,;, and Z,, are listed as functions of £o.
By means of this table the pads can be assembled to the com-
posite bearing.

For some chosen journal center position, X, and Y, the
corresponding value of £, is found from equation (59), and by
interpolation in the table the pad load and impedances are ob-
tained. They are summed in accordance with equations (61),
(62) and (64), where equation (62) serves to check that the
chosen position represents static equilibrium.

Journal of Tribology
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Fig. 4 Dimensionless damping coefficient. 60 deg arc, LID = 1, pivot
position 0.6, synchronous whirl frequency
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Fig. 5 Change in pad clearance caused by static load. 60 deg arc, LID
= 1, pivot position 0.6

In the special case of a damped eigenvalue calculation or a
rotor stability calculation, the frequency term, iw, must be
replaced by the complex eigenvalue:

S=N+iw
where A is the damping exponent. In dimensionless form:
s

6 .
0 et + iy (68)

where 6 is the logarithmic decrement.

Discussion and Results

Because of the many parameters it would be neither useful
nor feasible to present results in a form that is applicable in
general. Even when the pad has uniform cross section it still
requires 19 coefficients per eycosg, value to define the film
properties (equations (21), (26), and (27)). Hence, in practice
each case must be calculated separately, wherefore it is impor-
tant to have a method available which is as economic as
possible.




The present method accomplishes this by assuming that the
influence from the pad deformation can be accounted for sole-
ly by the change in clearance, ignoring the details of the local
deformations, and thereby eliminating the time-consuming
true elasto-hydrodynamic solution.

The validity of the approximation has been tested for a 90
degree arc pad, L/D = 1 and pivot position: (7w —0,)/(0, —
6,) = 0.6, under steady load with ¢, = 0.95 and A = 0.35.
Even under such heavy loading conditions, the calculated load
deviates only four percent from the value obtained by in-
cluding the local deformations.

Further results are shown in Figs. 2 to 7. They apply to a 60
degree arc pad with L/D = 1, pivot position: (w—0,)/(0, —
6,) = 0.6, and frequency ratio y = 1. As abscissa is chosen the
dimensionless parameter:

1- hg” = (Cyegcospy — ACy)/C (69)
where £,,;, is the film thickness at the pivot point.

Figures 2, 3, and 4 can be compared with diagrams 1, 2, and
3 in [1] which are based on an elasto-hydrodynamic solution.
The stiffness parameter D, in reference [1] is the inverse of the
flexibility parameter A such that D, = 40 for A = 0.0875, and
D, = 10 for A = 0.35. The agreement is very good.

Figure 2 shows the static load on the pad, F.y, in the dimen-
sionless form F,,/uQRL (R/C)?, equal to F,y/m (equation
(20)). Figures 3 and 4 give the dynamic radial stiffness and
damping coefficients K;; and By, respectively, in the dimen-
sionless forms CK,. /F,, = K;/F, and CQBy/F, =
B,./F,, (see equation (58)). The pad is assumed to have
uniform cross section and its inertia is ignored.

As expected, the flexibility of the pad reduces the load-
carrying capacity and the stiffness and the damping, with the
reduction in damping the most pronounced. The corre-
sponding change in clearance is shown in Fig. 5.

It should be emphasized that a similar reduction, of at least
the same magnitude, is caused by the flexibility of the pivot
support. Hence, both contributions must be included to ob-
tain realistic results.

By treating the pad as a curved beam, as also done in
references [1, 2], the analysis neglects any axial variation in the
deformations. This is believed to be of minor importance for
most pad geometries used in practice.

In the analysis, the radial clearance, C, for the unloaded
pad includes any contribution from thermal deformations.
Because the friction loss and, therefore, the pad temperature
change with speed it would be natural to incorporate this con-
tribution into the calculations. For a linear temperature gra-
dient across the pad thickness with an average value of AT/H,
the change in radial clearance is:

AT) (70)

H
where o is the coefficient of thermal expansion. In the
absence, however, of a well-established relationship between

friction loss and pad temperature, the thermal contribution is
taken as implicit, rather than explicit, in the analysis.

AC:therma.l = a°R%n ° (

Conclusion

An approximate method has been developed to calculate the
stiffness and damping properties of a tilting pad journal bear-
ing, including the influence of pad and pivot flexibility. The
method is easy to program and is fast in execution. It can be
used directly as a subroutine in rotor dynamic programs for
calculating unbalance response or damped -eigenvalues
(stability).
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